Programming Languages

Lecturer: William W.Y. Hsu
Chapter Y – Lambda Calculus
Introduction

- Developed by Alonzo Church and Haskell Curry in the 1930s and 40s.
- Branch of mathematical logic.
 - Provides a foundation for mathematics.
 - Describes—like Turing machines — that which can be effectively computed.
- In contrast to Turing machines, lambda calculus does not care about any underlying “hardware” but rather uses simple syntactic transformation rules to define computations.
Lambda calculus

- A theory of functions where functions are manipulated in a purely syntactic way.
- In lambda Calculus, everything is represented as a function.
- Functional programming languages are variations on lambda calculus.
- Lambda calculus is the theoretical foundation of functional programming languages.
- “the smallest universal programming language”.
- Sparse syntax and simple semantics — still, powerful enough to represent all computable functions.
Introductory Example

• Let’s look at how a lambda expression is evaluated.
• You are not expected to understand this, yet.
• The function

\[f(x, y, z) = x \times y + z \]

looks like this in lambda calculus:

\[f \equiv (\lambda x. (\lambda y. (\lambda z. \text{add}(\text{mul}(x \ y)z)))) \]
Introductory example

- Let us evaluate $f(3, 4, 5) = 3 \times 4 + 5$

- In Lisp/Scheme

```lisp
> (((((lambda (x)
    (lambda (y)
    (lambda (z) (+ (* x y) z)))) 3) 4) 5)

17
```

- In lambda calculus:

```lambda
(((((λx. (λy. (λz. add (mul x y) z))) 3) 4) 5)
```

2017/1/2
Introductory Example

• Evaluation is done by substitution. The first step is to replace x with 3:

\[
(((\lambda x. (\lambda y. (\lambda z. \text{add} (\text{mul} x y) z))) 3) 4) 5) \Rightarrow
(((\lambda y. (\lambda z. \text{add} (\text{mul} 3 y) z)) 4) 5)
\]

• Next, we replace y with 4:

\[
(((\lambda x. (\lambda y. (\lambda z. \text{add} (\text{mul} x y) z))) 3) 4) 5) \Rightarrow
(((\lambda y. (\lambda z. \text{add} (\text{mul} 3 y) z)) 4) 5) \Rightarrow
((\lambda z. \text{add} (\text{mul} 3 4) z) 5)
\]
Introductory Example

• Next, we multiply 3×4:
 $(((((\lambda x. (\lambda y. (\lambda z. \text{add } (\text{mul } x \ y \ z))) \ 3) \ 4) \ 5)) \ \Rightarrow$
 $(((\lambda y. (\lambda z. \text{add } (\text{mul } 3 \ y \ z)) \ 4) \ 5)) \ \Rightarrow$
 $((\lambda z. \text{add } (\text{mul } 3 \ 4) \ z) \ 5) \ \Rightarrow$
 $((\lambda z. \text{add } 12 \ z) \ 5)$

• Finally, we replace z by 5 and add:
 $(((((\lambda x. (\lambda y. (\lambda z. \text{add } (\text{mul } x \ y \ z))) \ 3) \ 4) \ 5)) \ \Rightarrow$
 $(((\lambda y. (\lambda z. \text{add } (\text{mul } 3 \ y \ z)) \ 4) \ 5)) \ \Rightarrow$
 $((\lambda z. \text{add} (\text{mul } 3 \ 4) \ z) \ 5) \ \Rightarrow$
 $((\lambda z. \text{add } 12 \ z) \ 5)$
 (add 12 5)
 17
Syntax

- There are four kinds of lambda expressions:
 - variables (lower-case letters)
 - predefined constants and operations (numbers and arithmetic operators)
 - function applications
 - function abstraction (function definitions)

expression ::= variable
 | constant
 | (expression expression)
 | (λ variable . expression)
Syntax – Function application

• In the expression

\[(E_1 \ E_2)\]

we expect \(E_1\) to evaluate to a function, either a predefined one like \texttt{add} or \texttt{mul} or one defined by ourselves, as a lambda abstraction.

• For example, in

\[(\texttt{sqrt} \ 9)\]

\texttt{sqrt} represents the constant (predefined) square root function, and 9 it’s argument.
Syntax – Function Application

- Most authors leave out parentheses whenever possible.
- We will assume function application associates left-to-right.

\[f \, A \, B \]

should be interpreted as

\[((f \, A)\, B) \]

not

\[(f \, (A \, B)) \]

Syntax – Function abstraction

- In \((\lambda x. \text{times } x x)\), the \(\lambda\) introduces \(x\) as a formal parameter to the function definition.
- Function application binds tighter than function definition.
- For example,

\[
(\lambda x. A B)
\]

should be interpreted as

\[
(\lambda x. (A B))
\]

not

\[
((\lambda x. A) B)
\]
Syntax – Function Abstraction

- In other words, the scope of \((\lambda x. \cdots)\) extends as far right as possible.
- For example

\[
(\lambda x. A B C)
\]

means

\[
(\lambda x. ((A B) C))
\]

not

\[
((\lambda x. (A B)) C) \text{ or } ((\lambda x. A) (B C))
\]
Variables

- In $(\lambda x. E)$ the variable x is said to be bound within E.
- This is similar to scope in other programming languages:

```java
{
    int x;
    ...
    print x
}
```
Variables

- In \(\lambda x. \text{square } y \) the variable \(y \) is said to be free.
- Similar to other programming languages, a free variable is typically bound within an outer scope, like \(y \) here:

```c
{
    int y;
    {
        ...
        printf y
    }
}
```
Variables

- Consider the expression
 \[(\lambda x. (\lambda y. \text{times} x y))\]
 In the inner expression
 \[(\lambda y. \text{times} x y)\]
 \(x\) is free, \(y\) is bound.
- Variables can hold any kind of value, including functions.
- We say functions are Polymorphic —they can take arguments of any type.
Syntax - Naming expressions

• We can give expressions names, so we can refer to them later:
 \[\text{square} \equiv (\lambda x. (\text{times } x\ x)) \]

• \(\equiv \) means \textit{is an abbreviation for}.

"square" ≡ \(\lambda x. (\text{times } x\ x) \)

\textit{is an abbreviation for}.

Syntax - Multiple arguments

- A lambda abstraction can only take one argument:
 \[(\lambda x. (\text{times} \ x \ x)) \]

- To simulate multi-argument functions we use currying. The abstraction
 \[(\lambda f. (\lambda x. f (f \ x))) \]
 represents a function with two arguments, a function \(f \), and a value \(x \), and which applies \(f \) twice to \(x \).
Syntax - Multiple arguments

• Example:
 (((\(\lambda f. (\lambda x. f (f x))\)) sqr) 3)
 = ((\(\lambda x. sqr(sqr x)\)) 3)
 = sqr(sqr 3)
 = (sqr 9)
 = 81

• In the first step, \(f\) is replaced by \texttt{sqr} (the squaring function).
• In the second step, \(x\) is replaced by 3.
Syntax - Multiple arguments

- Some authors use the abbreviation
 \[(\lambda x \ y \ z. \ E)\]
to mean
 \[(\lambda x. \ (\lambda y. \ (\lambda z. \ E)))\]
- In general, different books on lambda calculus will use slight variations in syntax.
Example - The identity function

- This
 \[(\lambda x. x)\]
is the identity function.
- The expression
 \[((\lambda x. x) E)\]
will return \(E\) for any lambda expression \(E\).
- For example, the expression
 \[((\lambda x. x) (sqr 3))\]
will return 9.
Example - Evaluation

- The expression

\[(\lambda n. \text{add } n \ 1)\]

is the integer successor function.

- So,

\[((\lambda n. \text{add } n \ 1) \ 5)\]

would return 6.

- Both \text{add} and 1 need to be predefined constants in the language.
 - Later we will see how they can be defined in the calculus from first principles.
Example - Parsing expressions

- Consider the expression
- \((\lambda n.\lambda f.\lambda x.f (nfx))(\lambda g, \lambda y.gy)\)
- Identify the lambda expressions, which extend as far to the right as possible:
 \((\lambda n.\lambda f.\lambda x.f (nfx))(\lambda g,\lambda y.gy)\)

\[= (\lambda n.\lambda f.\lambda x.f (nfx))(\lambda g.\lambda y.gy)\]

\[= (\lambda n.\lambda f.\lambda x.f (nfx))(\lambda g.\lambda y.gy)\]
Example - Parsing expressions

\[
= (\lambda n. \lambda f. \lambda x. f (nf x))(\lambda g. \lambda y. gy)
\]

\[
= (\lambda n. \lambda f. \lambda x. f (nf x))(\lambda g. \lambda y. gy)
\]

\[
= (\lambda n. \lambda f. \lambda x. f (nf x))(\lambda g. \lambda y. gy)
\]

\[
= (\lambda n. \lambda f. \lambda x. f (nf x))(\lambda g. \lambda y. gy)
\]

• Finally, insert parenthesis

\[
((\lambda n. (\lambda f. (\lambda x. (f ((n f) x)))))) (\lambda g. (\lambda y. (g y))))
\]
Example - Bound/Free variables

- Find the bound and free variables in the expression
 \(\lambda x. y \lambda y. y \ x \)
- First, parenthesize:
 \((\lambda x. (y (\lambda y. (y \ x)))) \)
- \(x \) is bound, \(y \) is free, \(y \) is bound:
 \((\lambda x. (y (\lambda y. (y \ x)))) \)